
A daptive mesh refinement, developed
by Marsha Berger and her colleagues
in the 1980s for gas dynamical simu-
lations,1 is a type of multiscale algo-

rithm that achieves high spatial resolution in lo-
calized regions of dynamic, multidimensional
numerical simulations. Greg Bryan’s excellent ar-
ticle2 in the March/April 1999 issue of Computing
in Science & Engineering describes our cosmolog-
ical AMR algorithm and how we have applied it to
star, galaxy, and galaxy cluster formation. Basi-
cally, the algorithm allows us to place very high
resolution grids precisely where we need them—
where stars and galaxies condense out of diffuse
gas. In our applications, AMR allows us to achieve
a local mesh refinement, relative to the global
coarse grid, of more than a factor of 106. Such res-
olution would be totally impossible to achieve
with a global, uniform fine grid. Thus, AMR al-
lows us to simulate multiscale phenomena that are
out of reach with fixed grid methods.

The AMR algorithm accomplishes this by
producing a deep, dynamic hierarchy of increas-

ingly refined grid patches. The data structures
for storing AMR data are complex, hierarchical,
dynamic, and in general quite large. For exam-
ple, the simulation of an X-ray galaxy cluster
shown in Figure 1 used a grid hierarchy seven
levels deep containing over 300 grid patches.

Existing visualization, animation, and data-
management tools developed for simple mesh
data structures cannot handle AMR data sets.
Consequently, in the past several years we have
been working at the National Center for Super-
computing Applications to overcome this deficit.
Here we describe our progress in four main ar-
eas: portable file formats, desktop visualization
tools, virtual-reality navigation and animation
techniques, and Web-based workbenches for han-
dling and exploring AMR data. Although we have
applied our work specifically to cosmology, we be-
lieve our solutions have broader applicability.

AMR data structures

Within an evolving AMR simulation, the data is
organized in a grid hierarchy data structure—
think of a tree of arbitrary structure and depth
(see Figure 2). The AMR algorithm generates
this tree recursively and adaptively. Every node
and leaf of the tree is associated with a 3D grid
patch (hereafter, simply a grid); these have vari-
ous sizes, shapes, and spatial resolutions.

DIVING DEEP: DATA-MANAGEMENT
AND VISUALIZATION STRATEGIES
FOR ADAPTIVE MESH REFINEMENT
SIMULATIONS

The authors’ cosmological applications illustrate problems and solutions in storing,
handling, visualizing, virtually navigating, and remote-serving data produced by large-
scale adaptive mesh refinement simulations.

MICHAEL L. NORMAN, JOHN SHALF, STUART LEVY,
AND GREG DAUES

National Center for Supercomputing Applications

1521-9615/99/$10.00 © 1999 IEEE

M A S S I V E D A T A
V I S U A L I Z A T I O N

36 COMPUTING IN SCIENCE & ENGINEERING

JULY/AUGUST 1999 37

In our cosmological simulations, each grid
stores arrays of data describing the physical state
of the cosmic fluid (density, temperature, and so
on), the gravitational potential, and a list of par-
ticle positions and velocities for stars and dark
matter. The cell size ∆x of the grid decreases with
depth in the hierarchy as 1/Rlevel, where R is an
integer refinement factor (2 in our application)
and level is the level of grid in the hierarchy.

A given grid in the hierarchy overlies and
more finely resolves a region in its parent grid,
and it can also be the parent grid for a yet
smaller, more refined child grid. Every grid, re-
gardless of its level, contains a complete repre-
sentation of the solution in the region it covers.
That is, there are no holes in the parent grid
where the child grids exist. Consequently, we can
obtain an approximate representation of the
global solution at any level of the hierarchy by
compositing the solutions at or above that level.

The solutions on the grid hierarchy advance
forward in time with individual time steps ∆t that
decrease proportionally to ∆x, starting at the
coarsest grid (the root grid), and proceeding to
finer and finer grids. When the algorithm reaches
the finest level, each grid at that level will advance
several times until its time “catches up” with the
time of its parent grid. The schedule of opera-
tions is similar to the W cycle of classic elliptic
multigrid.

Although a tree of grids is a useful way to
think about the grid hierarchy at an instant in
time, over time the number of levels and the
number and location of grids at a given level
change. Generally, the deeper into the hierar-
chy we go, the more grids there are and the

more rapidly they change. This becomes im-
portant when devising file structures for writ-
ing AMR data to disk. The solution we have de-
vised abandons any notion of the hierarchical
relationship between the grids and instead just
considers a collection of grids that changes over
time. Each grid writes its own disk file contain-
ing attributes such as spatial domain, level of re-
finement, and persistence, as well as the field
and particle data (for more detail, see the side-
bar on FlexIO). In addition, the AMR applica-
tion writes a single ASCII file to disk with all

Figure 1. A deep adaptive mesh refinement (AMR) grid hierarchy.
Contours of cosmic density in a simulation of an X-ray galaxy clus-
ter are plotted on a grid hierarchy seven levels deep with several
hundred individual grids.

Composite
AMR grid

Level 0

Level 1

Level 2

(a) (b)

Figure 2. Sch-
ematic of an
AMR grid hier-
archy in 2D:
(a) exploded
view, showing
the level struc-
ture, and (b)
logical view of
tree data
structure.

38 COMPUTING IN SCIENCE & ENGINEERING

the information required to assemble the com-
plete grid hierarchy from the grid files.

AMR visualization strategies

AMR data structures have required a reevalua-
tion of visualization system architecture. Tradi-
tionally, researchers have divided simulation data
sets into three primary categories: structured
grids, unstructured grids, and particles. AMR
data doesn’t really fit into any of these categories,
leaving us with a gaping hole in our ability to un-

derstand the results of this emerging class of
simulations. Consequently, we have invested
considerable effort in making visualization of
AMR data as sophisticated as that available for
the traditional structured and unstructured grids.
Of course, our first attempts at building the nec-
essary infrastructure involved recasting the AMR
data into a form that our traditional visualization
systems could handle.

The most naïve way of approaching AMR vi-
sualization is to sample the entire hierarchy into a
single structured grid. The primary advantages of

The sharing of data and visualization tools across research
groups and applications requires common file formats. An
AMR file format must be both platform- and application-
independent. Platform independence means the file format
cannot depend on any particular operating system or proces-
sor architecture. Application independence means that the
file format must not depend on a particular set of simulation
data structures and must be amenable to a wide variety of
simulation implementations. Given the great diversity in
code implementations and grid hierarchy structures
developed so far by the AMR community, application inde-
pendence has been much more difficult than platform inde-
pendence. Above all, the file format must be simple enough
that it can be easily modified to accommodate new file for-
mats not considered in the initial implementation.

The HDF and NetCDF standards (see the Glossary of abbre-
viations in the main text) are both popular platform-indepen-
dent file formats for storing binary simulation data sets. (See
http://hdf.ncsa. uiuc.edu/ for NCSA’s HDF home page and
www.unidata.ucar. edu/packages/netcdf for information on Uni-
data’s NetCDF.) Because HDF can interoperate with NetCDF,
HDF forms the basis for a platform-neutral file representation
for AMR data. This is all wrapped in a more abstract API—
FlexIO,developed by John Shalf—that is capable of more ad-
vanced file operations such as redirecting the I/O through a
network socket with little effort on the part of the programmer
(see http:// bach.ncsa.uiuc.edu/FlexIO/). FlexIO is available with
bindings for Fortran, C, and C++. It also allows translation to
an ancillary file format called IEEEIO, which can be read and
written using 100% pure Java or IDL (www.rsinc.com) rather
than requiring Java be linked to native methods.

Both NetCDF and HDF store data in a self-describing man-
ner. Each array of data stored in the file intrinsically includes
its data type and dimensions. The user can extend the des-
cription of the data through attributes—additional named
arrays of information that can store information like coordi-
nate systems, time step, and calibration information. Table A
and Table B list the standard attributes used in the FlexIO
AMRwriter API. We add these NetCDF-style attributes to each

grid to fully describe its position in the hierarchy and thus
uniquely identify it.

As you can see, there is a considerable amount of redun-
dancy in these attributes. However, this ensures that the
metadata will be in a form that is as convenient as possible
for application designers, who tend to make different choices
in expressing the same set of concepts. Also, all parameters
related to refinement and grid placement are expressed both
as integers and in floating-point form. The floating-point rep-
resentations are necessary because they are most convenient
for visualization systems, and they are what most simulations
use internally to represent grid placement. However, the nu-
merical precision of floating-point numbers becomes inade-
quate after about 10 levels of refinement. The only truly ac-
curate representation of placement is integer coordinates. So
integer and double-precision floating-point descriptions of
refinement and grid placement are necessary to provide
both maximum fidelity and convenience of representation.

Typical AMR simulation codes simply write one file per grid
so that by the end of the simulation run you have a directory
filled with thousands of files. The AMRwriter API enables you
to combine all of the grids in the AMR hierarchy into a single
file, simplifying data management. In fact, a sequence of
time steps can be stored in a single file that takes into ac-
count the fact that grids on different levels are updated at
different frequencies.

Finally, the FlexIO AMR API suite includes several sample
implementations of readers for this file format. The simplest
of the readers simply fills out a data structure with metadata
information that it reads from the file and presents you with a
list of information about every grid in the file. A more sophis-
ticated reader allows you to select grids that are active at a
particular time step so you can animate changes in the hierar-
chy through time. It minimizes data movement from disk au-
tomatically by loading only grids that have changed when
the time step changes. It also allows you to select particular
levels in the hierarchy (or remove intermediate levels that
may clutter the scene). Finally, an enhanced version of this
second reader automatically converts the AMR hierarchy into

FlexIO: A portable file format for AMR data

JULY/AUGUST 1999 39

this approach are that resampling is very easy to
implement, and that the visualization-processing
algorithms on structured grids tend to give much
better performance than their unstructured-grid
(finite-element) counterparts. Resampling can
take place in full 3D (sampling into a uniform
mesh) or by projection of all the data onto a 2D
slice. This methodology is clearly not scalable,
however, because in many cases an AMR simula-
tion has such a huge range of length scales that
there is insufficient memory in the graphics work-
station and indeed in the supercomputer to rep-

resent the entire hierarchy. For example, sampling
the results shown in Figure 1 to a uniform grid
would require a 8,1923 grid—far larger than
would fit into the memory of the largest super-
computer in the world. This method also results
in a lot of redundant work on grid points that
have been projected from the hierarchy’s coarser
grids into the visualization grid’s finer mesh. We
can compensate for the ratio of scale by specifying
small regions of interest, but this leaves us with
an incomplete view of the problem domain. Some
early tools we implemented using AVS and IDL

a mesh of hexahedral finite-element cells (removing all grid
overlaps in the process). After selecting the desired simulation
time step and levels of the hierarchy to show, this third reader
gives you an array of points and a connectivity list for an array
of hexahedral cells that connect those points. This operates
within an AVS module as an example of how to integrate
AMR data into existing commercial visualization systems.

In the near future, the HDF group, led by Mike Folk of
NCSA, will update the file format to use HDF5, which pro-
vides a much richer and more efficient means of storing
metadata and intergrid relationships (implied or otherwise).
HDF5 also has full support for parallel I/O under HDF and
MPI; this makes it much more suitable for wide-area distrib-

uted simulation codes. We are also closely watching the ASCI
DMF efforts in enhancing HDF5 with a file storage API based
on vector bundles.1 This is a far more ambitious project than
the standard described above, so we expect it will take some
time to reach production. However, when it does arrive, it
will provide a much more robust data model than we have
been accustomed to under NetCDF and HDF4.x.

Reference
1. D.M. Butler and S. Bryson, “Vector-Bundle Classes Form Powerful Tool for

Scientific Visualization,” Computers in Physics, Vol. 6, No. 6, 1992, pp.

576–584.

Table A. Attribute specification: Real-valued attributes.

Attribute Description

origin Floating-point origin of the data set
delta Physical spacing between grid points in the data set
min_ext Minimum coordinate of the data set in physical space
max_ext Maximum coordinate of the data set in physical space
time Current real-valued time that this grid represents

Table B. Attribute specification: Integer-valued attributes.

Attribute Description

level Level of this grid in the AMR hierarchy; levels are numbered from 0 to (n levels – 1)
timestep Integer time step in the file with respect to the evolution of the finest-resolution grid

in the hierarchy; in effect, the global simulation time step
level_timestep Integer time step for the grid with respect to the evolution on its particular level
persistence Number of time steps the grid persists on this particular level; in terms of the other

parameters, the number of timesteps per level_timestep
spatial_refinement Refinement in each Cartesian direction; a divisor that defines the refinement with

respect to the top-level (0th level) grid
time_refinement Refinement for the time step with respect to the top-level (0th level) grid step size
grid_placement_refinement Attribute created independently from the spatial_refinement for staggered grids
iorigin Integer origin of the grid placed in the coordinates of the spatial_refinement defined

above

40 COMPUTING IN SCIENCE & ENGINEERING

were very valuable in the development of the
AMR codes (see Figure 3 and the Glossary of ab-
breviations). But these are reaching their limits of
scalability as our AMR data sets ramp up in size
and dynamic range.

To capitalize on AMR’s multiresolution nature
while still fitting it into existing visualization
frameworks, an obvious choice is to convert the
AMR hierarchy into an unstructured grid com-
posed of hexahedral cells (cubes). This requires
removal of overlapping cells in the hierarchy, an
operation that can be implemented with O(n)
complexity (where n is the number of vertices in
the entire hierarchy). This technique gives us
graphics output that fully integrates the range of
scale from the simulations. However, finite-
element or unstructured grids are much less
memory-efficient than the structured grids in the
original AMR hierarchy because all connectivity
in unstructured meshes must be explicit, whereas
structured-mesh vertex connectivity is com-

pletely implicit. Furthermore, visualization algo-
rithms on unstructured grids tend to be much
slower than their structured-grid counterparts
and much more difficult to parallelize efficiently.
So, while translating AMR hierarchies into un-
structured grids has greatly improved the visual-
ization fidelity, we are still left with the same sort
of performance and scalability problems we had
when sampling into a uniform grid.

Unfortunately, these previous endeavors into
AMR visualization treated AMR grid structures
as second-class data types. Visualization systems
and libraries are designed to deal only with data
that they consider first-class data types such as
particles, structured grids, and unstructured
grids. All other data structures must be trans-
lated to fit into this narrow conception of the
computational domain.

The treatment of AMR grids as first-class
data structures for visualization computations
leads to a variety of performance optimizations.
For instance, visualization algorithms can cap-
italize on each grid’s spatial location and data
content to remove it from the computation us-
ing lightweight tests. A naïve isosurfacing algo-
rithm must search every point in a structured
mesh to determine where the surface should be
placed. But an algorithm can cull a set of AMR
grids based on their precomputed minimum
and maximum data values to remove grids
whose data content falls outside the range that
would intersect with the level surface. An AMR
ray tracer can trivially evaluate whether a grid
in the hierarchy would resolve to subpixel res-
olution and thereby choose whether to descend
any farther down the hierarchy as it makes
progress through the data. A plane slicer need
only consider grids that it would intersect.
These are just examples of the most obvious set
of applicable optimizations. We have barely be-
gun to explore the rich set of possibilities of a
grid structure that expresses data locality and
level of detail natively as AMR does.

Opportunities for parallelism
As mentioned earlier, when we scale up the size
of AMR simulations, we still face scalability
problems. Most visualization algorithms, li-
braries, and systems are inherently serial be-
cause that was sufficient back in the days of vec-
tor computing. However, to create visualization
tools that can interactively explore the terascale
data sets produced on today’s massively parallel
systems, we must parallelize the visualization
computations. That is our only means of fully

Glossary of abbreviations
AMR Adaptive mesh refinement
ASCI Accelerated Strategic Computing Initiative
API Application programming interface
AVS Advanced Visualization System, a popular graphical visual-

ization tool from Advanced Visual Systems, Maynard, Mass.
CAVE Computer-Assisted Virtual Environment. Developed at the

Electronic Visualization Laboratory of the University of
Illinois, Chicago, CAVE is a room-sized virtual-reality en-
vironment where the floor, ceiling, and walls project a 3D
stereoscopic view of a scene.

CGI Common gateway interface
DMF Data management facility
EVL Electronic Visualization Laboratory at the University of

Illinois, Chicago
HDF Hierarchical data format, a platform-independent binary

file format for storing simulation and image data developed
by the NCSA HDF group.

HTTP Hypertext transfer protocol
IDL Interactive Data Language, a popular interpreted-langu-

age-based visualization tool created by Research Systems
Inc. of Boulder, Colo.

MPI Message-passing interface
NCSA National Center for Supercomputing Applications
NetCDF Network common data format, a platform-independent bi-

nary file format for storing simulation data sets developed
by the Unidata group at the University Corporation for At-
mospheric Research.

RMI Remote method invocation
SPMD Single-program, multiple-data
VE Virtual environment

JULY/AUGUST 1999 41

exploiting the performance of this new crop of
supercomputers. Therefore, from the very start,
we have considered opportunities for paralleliz-
ing AMR visualization so that it becomes an in-
tegral standard as these new libraries develop.

Opportunities for visualization algorithm par-
allelism abound. There is plenty of research into
parallelizing visualization computations on struc-
tured and unstructured grids, and we can apply
that research to AMR visualization algorithms.
For structured grids (often called unigrids), a typ-
ical parallelization scheme is a regular domain
decomposition of the grid into smaller subcubes
of data that processors can operate on in a
straightforward data-parallel (SPMD) manner.
For unstructured grids, domain decomposition
is much more difficult; researchers have proposed
a variety of heuristic algorithms to address the
problem.3

AMR data offers many more opportunities for
parallel execution in the visualization pipeline.
We can, for example, partition individual grids
for data-parallel computations (treating each as a
unigrid computation); however, such domain de-
composition incurs a large cost because it re-
quires a sizable communication volume between
processors to distribute the grid data. Because
the cost of distributing the data often exceeds the
benefits of parallelism, this technique has lim-
ited utility. On shared-memory architectures like
the Origin 2000, we can use an even lighter-
weight partitioning, such as handing out grids to
different processors in a worker-slaves arrange-
ment. When each slave thread finishes comput-
ing on a particular grid, it can request another
grid to compute from the master processor. This
method raises the same issues as domain decom-
position, but it eliminates the costs of copying
the data across processors.

Level of detail
Perhaps the ultimate way to improve the user’s
ability to interact with visualization applications
is to reduce or stagger the amount of data that
must be computed at any given time. Normally,
the stages of the visualization pipeline execute
sequentially, forcing the user to wait until the en-
tire pipeline has executed before the image on
the screen updates. Even if each stage executes
in parallel, the wait can be considerable. With
AMR data, we can extend the parallelism in the
pipeline direction. Each stage can operate si-
multaneously to pass the grids through the pipe-
line in a streaming manner. So the root grid of
the hierarchy can pass through to the viewer

Figure 3. Visualizing
AMR data using com-
mercial software: (a)
screen shot of AVS
pipeline, which auto-
matically converts an
AMR grid data struc-
ture into an unstruc-
tured mesh of hexa-
hedral cells; (b–e)
zoom sequence
showing the depth of
the grid hierarchy.

(e)

(d)

(b)

(a)

(c)

42 COMPUTING IN SCIENCE & ENGINEERING

very rapidly, and over time the higher-detail sub-
grids make their way through the pipeline to
gradually improve the quality of the scene. Us-
ing this streaming-AMR-grids paradigm gives
the visualization system a natural continuum be-
tween interactivity and fidelity.

We can modify the order in which these levels
of detail fill in simply by sorting the list of grids
at the beginning of the pipeline to fit a particular
sorting criteria. For instance, the simplest sort is
to fill in the grids by their level in ascending order:
coarsest to finest grids on a level-by-level basis.
But we can change the sorting algorithm to fill in
detail near a point of interest. Alternatively, we
can sort the grids so that they fill in preferentially
along the line of sight of the current camera view
of the scene. Grid streaming opens up a robust
set of methods for improving interactive perfor-
mance and optimizing the method of filling in de-
tail to fit a wide range of requirements.

Desktop visualization tools and
workbenches

Back in the 1980s, the supercomputing commu-

nity began to realize that 3D visualization tools
were a basic necessity for understanding the out-
put of supercomputer simulation codes. The
Laboratory for Computational Astrophysics4 re-
leased a tool called 4D2 to provide a free and
publicly accessible means of visualizing unigrid
data coming from its ZEUS-3D code. This
proved a great success among LCA’s community
of users. LCA is now developing a portable re-
placement for 4D2 that will provide a simple-to-
use visualization package that handles AMR data
in addition to the original complement of uni-
grid data visualization features.

Our current implementations for native AMR
computations are built around the Visualization
Toolkit, an extensible, freely available, open-
source set of visualization libraries. (See www.
kitware.com/vtk.html.) VTK gives us a set of tools
that we can modify at a very low level to treat
AMR data as a first-class (native) data type. This
lets us cast algorithms in a form that takes max-
imal advantage of AMR’s regularity and multi-
scale nature. We anticipate that this will greatly
improve the performance and flexibility of visu-
alization systems for AMR data. By building
onto VTK, we’re making these techniques wide-
ly available; other research groups can incorpo-
rate them into their own visualization tools, thus
extending them far beyond our initial efforts.
Figure 4 is a screen shot of the 4D2-VTK tool
with an AMR slicer in operation.

The NCSA Computational Cosmology
Observatory
Desktop tools have their limits, however. One of
the biggest problems with general-purpose vi-
sualization tools is that they give users too many
choices. It may seem hard to believe that such
flexibility is not necessarily a good thing, but
many full-featured visualization tools bewilder
scientists with a dizzying array of widgets and
menu choices, many of which are irrelevant to
the problems they want to solve.

The “workbench” paradigm restricts a tool’s
flexibility without making it thoroughly useless.
The tool’s designers can optimize the workbench
user interface for a particular audience and class
of problems, emphasizing visualization para-
digms and statistical metrics specific to the tar-
geted research community. This customization
can even include details such as the specific
nomenclature for units of measurement rather
than the more generic terms you would find
in a general-purpose tool. Furthermore, a good
workbench operates as a gateway to accessing

Figure 4. Visualizing AMR data using custom software based on the
Visualization Toolkit. Here, the gas density on a slice through the
center of a galaxy cluster is colorized (red = low, blue = high). For
clarity, “slicelets” are offset from one another by a distance propor-
tional to the level of the grid hierarchy from which the data is ob-
tained. By treating the AMR hierarchical data structure as a first-
class data type, VTK makes possible many optimizations that speed
up visualization performance.

JULY/AUGUST 1999 43

data archives and running simulation codes. This
lets scientists take advantage of sophisticated re-
search codes without themselves being expert
computer programmers. Designers of these tools
usually implement workbench interfaces as Web
tools to maximize flexibility.

The NCSA Cosmology Applications Team—
in collaboration with cosmologists at the Univer-
sity of Missouri, the Massachusetts Institute of
Technology, and New Mexico State University—
is performing roughly 100 extremely high-reso-
lution AMR simulations of X-ray galaxy clusters
and placing the results in an online archive called
the NCSA Computational Cosmology Observa-
tory. (See http://sca.ncsa. uiuc.edu.) Theorists will
find this archive useful because they can use the
statistical properties of the simulated cluster sam-
ple to constrain allowable cosmological models.
Observers will be able to conduct simulated ob-
servations of the X-ray clusters and their environs
to help plan their observing campaigns. Our goal
is to make this archive available to the scientific
community while shielding users from the size
and complexity of the raw AMR data. We also
want to give users a variety of data manipulation,
export, visualization, and analysis tools.

To accomplish these goals, we developed the
Observatory as a workbench-style system that

lets users interact with archived simulation data
over the Web. This environment supports data
retrieval across several machines at the NCSA
and between those machines and the local client
systems. The Observatory further supports dy-
namic and interactive multidimensional visual-
ization and basic analysis tools to extract speci-
fied physical attributes of the cluster systems.

Figure 5 shows a diagram of the Observatory.
The user begins by selecting a cluster from a cat-
alog. The server then retrieves the raw AMR data
from NCSA’s mass storage system. Once the data
is on the Observatory Web server, the user ex-
tracts from the AMR files particle data and field
data sampled to a uniform grid of user-specified
size and spatial resolution. At this point, the user
may export the extracted data as HDF files for
local analysis or use the suite of analysis tools pro-
vided as a part of the Observatory.

As we considered what type of visualization
software to provide for clients’ local machines,
our critical requirements were that the software
be platform-independent and thin (small and
quick to download). These characteristics are es-
pecially important for 3D visualizations. We
have successfully addressed these concerns in
two ways. First, the Observatory renders 3D ob-
jects on the server side. Client applets down-

Special Focuses

Intelligent Information Retrieval...
Intelligent information retrieval—the problem of delivering truly relevant documents
matching user needs—has become increasingly central in recent years. This special issue
will present creative approaches to solving intelligent information retrieval problems using
AI or ML techniques.

...and Constraints
A wide variety of problems can be naturally modeled as constraint-satisfaction and
optimization problems, including scheduling, planning, resource allocation, routing, design,
configuration, and diagnosis applications in the engineering, manufacturing, and service
sectors. The special issue will provide insight into the increasing popularity of constraint
technology.

IEEE Intelligent Systems

MARCH/APRIL 1999

& the i r app l i cat ions

IEEE

ALSO:ALSO:

Room service, AI-style
Gleaning the Web
Online maps: help or hindrance?
DARPA’s High-Performance Knowledge Base program IEEEhttp://computer.org

Ju
ly

/
A

u
g
u
st

 I
ss

u
e

AI News You Can Use

44 COMPUTING IN SCIENCE & ENGINEERING

loaded from the site let the user specify which
cluster to visualize, which field quantities to
download, and the type of visualization, such as
an isosurface. The applet then connects back to
a CGI script via the HTTP protocol, which al-
lows the user’s applet to post its input to the CGI
script. The script then takes the user’s prefer-
ences and launches a server-side VTK-based
rendering program. Using the server for ren-
dering achieves the goal of having a thin client
on the user’s local machine.

Second, although visualizations created by VTK
are not platform-independent, VTK does provide
classes to convert the visualizations into a VRML
2.0 format and then write them to a file. However,
instead of writing to a file, our CGI scripts write
the contents to the standard output, and the server
sends them back to the applet. The applet then
simply opens a new browser window and specifies
the content type (VRML), and the browser loads
the appropriate VRML-viewer plug-in. Because
browsers running under many different operating
systems can display VRML-based graphical rep-
resentations, this gives us a platform-independent
way of displaying complex 3D visualizations. In
short, the site leverages widely and freely available
technology to deliver high-quality 3D visualiza-
tions to a variety of platforms without over-
whelming the processing power and storage ca-
pacity of a client’s local machine.

We also meet the requirement of lightweight
client visualization software with Observatory
site tools that implement lower-dimensional vi-
sualizations through Java graphics. Specifically,
the client applet allows the user to launch CGI
scripts that sample subsets of large 3D HDF files.
The server retrieves these large files from the
archive storage, and they remain on the server
side. Only the smaller subsets of the data are

transferred over the network for the
client software to process.

One capability of the client applet is
the construction of 2D color contour
plots of the sampled data. Figure 6 is a
screen shot of a working session of the
Observatory implementing these plots.
In keeping with the consideration of pro-
cessing speed and memory on the client
side, the client applet allows users to con-
trol the size and number of images gen-
erated. We are also developing archive
tools for other forms of lower-dimen-
sional visualizations—such as 2D projec-
tions of 3D data and 1D line plots.

Future developments of the Observa-
tory site will focus on implementing remote
method invocation (RMI) to establish a more per-
sistent and unified computing environment, al-
lowing more finely controlled access of objects on
the server. We will also add links to other elec-
tronic literature and develop software to interact
with existing digital libraries of observed data. This
will mean adding support for more data types and
formats, as well as constructing additional analysis
tools to allow direct comparison with observed
data.

Multiscale virtual navigation and
animation

Virtual environments that provide dynamic views
covering the full human visual field promise in-
sights not otherwise easily achieved into the rich
variety of spatial and temporal structures arising
from AMR calculations (see Figure 7). However,
given the bulk of AMR data, creating graphical
realizations at acceptable frame rates is a major
problem even for high-end graphics systems. Vir-
tual environments are more demanding in this
respect than desktop systems: Although desktop
users might tolerate a few seconds’ delay while
an image is computed, VE users lose their sense
of immersion and virtual user interfaces become
unusable if frame rates fall below a few frames
per second.

It becomes essential, in the exploration pro-
cess, for the VE user to focus attention on sub-
sets of the data. Fortunately, the AMR paradigm
offers natural ways to do this. The system can
cheaply present data from the coarsest grids.
Furthermore, the very distribution of the AMR
grids indicates active areas in the computation.
In a cosmological simulation, viewing animated
grid-bounding boxes alone can reveal locations

Java clientWeb serverMSS

Raw AMR data Raw AMR data Extracted data

FTP
AMR grid

extract

AMR particle
extract

 Java applet Processed data

3DIsoViz

3DParticles

3DSlice

2DContour

1DLinePlot

X-rayImager

VRML

Java
graphics

Figure 5. NCSA Computational Cosmology Observatory.

JULY/AUGUST 1999 45

of filaments and forming galaxy clusters.
From such cues, the user could indicate a vol-

ume of interest, perhaps by sweeping it out di-
rectly with a gesture. Sizes of interesting regions
in AMR data might well span several orders of
magnitude as exploration proceeds, but they
could still be naturally described by the virtual
users, who would be able to adjust their scale at
will relative to the data. The visualization system
could then concentrate its effort on, say, the coars-
est few AMR grids spanning that region, extend-
ing outward (for context) and inward (for better
resolution) as computation and rendering time
permit. Applying the streaming-AMR-grid
schemes described earlier will be crucial here.
Much experimentation will be necessary to de-
termine how the focusing process should work
and how to design the balance between user spec-
ification and automatic adaptation.

Focusing attention, of course, isn’t merely a way
to accommodate the limitations of available graph-
ics systems; it will be important also in extricating
relevant features from what can easily become a
visually cluttered mass of detail. Maximal realism is
not always the best way to display scientific data!

Still, there will be a need for views of higher
quality than those that can be generated at inter-
active rates. It seems promising to build a hybrid
system that would decouple part of the rendering
from the high-frame-rate virtual environment:
The user would plant a virtual camera in space. A
separate system (possibly a remote supercom-
puter) would render clearer views of the camera’s
scene at leisure and display the resulting images
within (or alongside) the virtual environment.
Meanwhile, the user would continue to interact
with the virtual world.

Design of suitable user interfaces is another
major issue for virtual AMR. Describing just
what should be shown, and when and how, will
call for plenty of knobs to tweak. While immer-
sive VEs make direct spatial interaction easy,
they lack good counterparts to the keyboard and
pointer that make the familiar desktop widgets
so efficient to use.

Virtual AMR in the Virtual Director
We are using the NCSA Virtual Director as a host
for developing virtual AMR visualization tools
(http://virdir.ncsa.uiuc.edu/virdir/). The Virtual Di-
rector is a CAVE-based software framework that
wraps around visualization applications, support-
ing navigation through space and time, virtual
camera choreography and recording, and net-
worked collaboration in shared virtual spaces.5 Its

purpose is to provide simple creation of anima-
tions—either by automating a series of virtual-re-
ality screen snapshots while driving the virtual
camera along user-designed animation paths, or
by exporting the path for use by external render-
ing software. Figure 8 illustrates the use of camera
path for multiscale exploration. We have pro-
grammed the camera to adjust scale as it ap-
proaches the forming protostar.

Figure 6. Screen shot of a working session on the Cluster Archive
site illustrating Java-based 2D visualization. The components of the
Java applet allow the user to specify parameters for data retrieval,
sampling of the data into lower-dimensional subsets, and 2D color
contour visualization with multiple color maps and zooming
features. Here, the user sees a plot of the gas density for a slice
through the core of a typical cluster.

Figure 7. The authors explore AMR data from a cosmological simu-
lation of primordial star formation using the NCSA Virtual Director.
They are standing in front of an ImmersaDesk—a virtual environ-
ment akin to a drafting table invented at the Electronic Visuali-
zation Laboratory of the University of Illinois, Chicago.

46 COMPUTING IN SCIENCE & ENGINEERING

Users invoke many of the Virtual Director’s
functions through a combination of 3D gestures
and text-based commands. Using text makes it
convenient to express commands using voice,
and indeed users often control the Virtual Di-
rector using a commodity PC-based voice recog-
nition system—a partial solution to the user-in-

terface conundrum. Likewise, it is easy to send
commands as network messages, a facility that
proves useful in collaboration sessions.

The power and potential of AMR to
solve multiscale problems in compu-
tational astrophysics and cosmology
excite us. We view AMR as continu-

ing a trend toward simulations of realistic com-
plexity begun in the 1980s with the emergence of
supercomputers and accelerated in the 1990s with
the advent of massive parallelism. However, even
the most powerful parallel computers cannot ac-
commodate uniform grids larger than about
1,0243, or a billion cells. With adaptive grids, we
have been able to achieve resolutions in excess of
106 locally with far fewer cells. Thus, AMR can
be viewed as an algorithm for reducing the mem-
ory and CPU requirements of simulations for a
specified range of length and time scales, or en-
abling simulations not otherwise possible.

The physical sciences host an abundance of
multiscale phenomena that can benefit from the
application of AMR. Examples include atmos-
pheric science, fluid dynamics, combustion, ma-
terials science, and so forth. Nonetheless, AMR
has not been widely applied because of its com-
plexity and the lack of available tools. The de-
velopment and dissemination of AMR libraries
and frameworks6 in recent years has begun to re-
verse this situation. We hope that our work on
data formats and visualization strategies will be
of use to AMR adopters in other disciplines.

Acknowledgments
We thank Donna Cox, Bob Patterson, and Matt Hall of
the Virtual Director team for allowing us to show some
of their unpublished work. We also thank Galina
Pushkareva and Brad Miksa for permission to use Figure
4. This work is partially supported by NASA grants
NAG5-7404, NAGW-3152, and NAG5-3923.

References
1. M.J. Berger and P. Collela, “Local Adaptive Mesh Refinement for

Shock Hydrodynamics,” J. Computational Physics, Vol. 82, No. 1,
May 1989, pp. 64–84.

2. G.L. Bryan, “Fluids in the Universe: Adaptive Mesh Refinement
in Cosmology,” Computing in Science & Engineering, Vol. 1, No. 2,
Mar./Apr. 1999, pp. 46–53.

3. V.E. Taylor et al., “A Decomposition Method for Efficient Use of
Distributed Supercomputers for Finite Element Applications,”
Proc. Int’l Conf. Application-Specific Systems, Architectures, and
Processors, IEEE Computer Society Press, Los Alamitos, Calif.,
1996, pp. 12–24.

4. D. Song and M.L. Norman, “4D2 User Guide,” Document
TR016, National Center for Supercomputing Applications, Ur-
bana, Ill., http://lca.ncsa.uiuc.edu/lca_intro_4d2.html.

(e)(d)

(b)

(a)

(c)

Figure 8. Diving deep using the NCSA Virtual Director. With wand
and voice commands, the user interactively defines a camera path
that passes near a forming protostar. A range of scales in excess of
in excess 100,000 is resolved with a 13-level AMR grid hierarchy. (a)
overview and (b–e) camera-eye view as it traverses the levels. Wire-
frame isosurfaces and colorized points show the distribution of gas
density in the neonatal cloud.

JULY/AUGUST 1999 47

5. D.J. Cox, “What Can an Artist Do for Science: ‘Cosmic Voyage’ IMAX Film,”
Art @ Science, C. Sommerer and L. Mignonneau, eds., Springer-Verlag, New
York, 1998, pp. 53–59.

6. S. Baden et al., “Workshop on Structured Adaptive Mesh Refinement Grid
Methods,” IMA Conference Series, Springer-Verlag, to be published 1999.

Michael L. Norman is a professor of astronomy at the University of
Illinois, Urbana-Champaign, and senior research scientist at the
National Center for Supercomputing Applications where he directs
the Laboratory for Computational Astrophysics, which is devoted
to the development and dissemination of astrophysical modeling
software. His interests are in simulating astrophysical phenomena,
cosmological structure formation, and scientific visualization. He
received his PhD from the University of California, Davis, and has
been a staff member at the Lawrence Livermore and Los Alamos
National Laboratories as well as the Max Planck Institute for Astro-
physics. He has recently become a CiSE area editor for applications.
Contact him at NCSA, Beckman Institute D-25, 405 N. Mathews St.,
Urbana, IL 61801; norman @ncsa.uiuc.edu; http://lca.ncsa.uiuc.edu.

John Shalf works for the NCSA Visualization and Virtual Environ-
ments group (www.ncsa.uiuc.edu/SCD/Vis) and the StarTap inter-
national high-performance networking project (www.startap. net).
His background is in computer engineering, but he tends to hang
around physicists and computer scientists these days. He has con-
tributed to a variety of projects in networking, distributed com-
puting, and application development frameworks. Contact him
at jshalf@ncsa.uiuc.edu; http://bach.ncsa.uiuc.edu.

Stuart Levy develops software for the Virtual Director group at
NCSA. His background includes work in mathematical computer
graphics, data networking, and systems programming. He enjoys
amateur astronomy, as well as peering over the shoulders of pro-
fessionals. Contact him at slevy@ncsa.uiuc.edu.

Greg Daues is a postdoctoral research associate in the Laboratory
for Computational Astrophysics of the NCSA. He has a PhD in
physics and has been working with Java and VRML for two years in
the development of Web-based scientific visualization tools. Con-
tact him at daues @ncsa.uiuc.edu.

Get a copy of the next issu
e on

Software Certification for $10 at

membership@computer.org

Subscribe now! See http://computer.org for special pricing options or contact our customer service department at
membership@computer.org

EDITORIAL
CALENDAR

1999
JULY

Software Certification ✺
Software Security

SEPTEMBER
Organizational Design ✺
Architectural Design

NOVEMBER
Cross Pollinating Disciplines ✺
Defining Software Engineering
as a Profession

2000
JANUARY

Process Diversity
MARCH

Cobol: New Millenium
APRIL

Engineering in the Small

Keep track of advances in the software develop-
ment industry! Access how-to’s, tutorials, and

experience reports direct from the trenches! Find
controversy and disparate opinions!

Be part of the community with a subscription to
IEEE Software. This widely respected magazine
covers crucial advances in software technology,

development, and professional issues.

As a subscriber, you’ll get coverage on:

• Leading-edge programming practices •
• Internet development •

• Technical project management •
• Component-based development •

• Object-oriented techniques •
• Living with rapid technology change •

http://computer.org/software

Community
OF

BUILD THE

Leading Software Developers!

